Program Współpraca Polska-RPA	R/ z I w Pc	APORT CZĄS realizacji pro ramach p olska-RPA	TKOWY Djektu Drogramu międzyn	arodowego	Narodowe Centrum Badań i Rozwoju
Nr raportu	IR-RATfor5G-10				
Data aktualizacji raportu:			2022.05.11	Wersja	7
Numer umowy PL-RPA2/02/RJ		ATfor5G+/2019	Akronim	RATfor5G+	
Okres realizacji projektu o		od	2019.01.01	do	2022.06.30
Tytuł projektu Technologie o bezprzewodow			ostępu radiowego dla sta vych	andardu 5G i p	przyszłych generacji sieci
Tytuł raportu Tes		Testy USRP			

1. Testy QPSK

Pierwsze testy polegały na sprawdzeniu kompatybilności radia wraz z Matlabem. W tym celu zrobiono QPSK Transmitter oraz QPSK Receiver na dwóch osobnych USRP oraz komputerach. Aby było to możliwe potrzeba pakietów Communications Toolbox Support Package for USRP Radio oraz Simulink.

Oficjalna dokumentacja Matlaba stworzyła skrypty, które to umożliwiają, aczkolwiek nie są one do końca kompatybilne z urządzeniem, więc trzeba je było zmodyfikować.

QPSK Transmitter

Skrypt matlabowy jest w wersji live - jest to dość nowa modyfikacja, która umożliwia nie tylko pisanie samego kodu, ale również warstwę wizualną tworząc praktycznie kod wraz z dokumentacją. Rozwiązanie podobne jest do znanego z Pythona Jupyter Notebook.

W miejscach pokazanych poniżej potrzebna jest zmiana zmiana platformy na B200.

Prepare USRP B210

Discover Radio

Discover radio(s) connected to your computer. This example uses the first USRP® radio found using the findsdru function. Check if the radio is available and record the radio type. If no available radios are found, then this function will throw an error.

Create a USRP B210 transmitter System object.

hRadioTx	= comm_SDRuTransmitter;
hRadioTx.Platform	= B200';
hRadioTx.SerialNum	= radio.SerialNum;
hRadioTx.ChannelMapping	= 1;
hRadioTx.CenterFrequency	= 5.8e9;
hRadioTx.MasterClockRate	= 20e6;
hRadioTx.InterpolationFactor	= 100;
hRadioTx.Gain	= 89.75;

Obtain hardware info and verify hardware settings.

hRadioTxInfo = info(hRadioTx)

Rys. 2 Fragment skryptu QPSK Transmitter cz. 2

Reszta kodu pozostaje bez zmian.

	Main Streaming Loop.
38	for iter = 1:1e9
40	% Generate QPSK pulse-shaped complex baseband I/Q samples.
41 42	x = hTx();
43	% Plot PSD.
44	hSpectrum(x);
46	% Use USRP radio to tx one frame of complex baseband I/Q samples.
47	underrun = hRadioTx(x);
48	if underrun ~= 0
49	fprintf('undderrun = %d.\n', underrun);
50	end
51 52	end
	Release objects.
53 54	release(hRadioTx) release(hTx)
55	retease(nspectrum)

Rys. 3 Fragment skryptu QPSK Transmitter cz. 3

Po włączeniu, na drugim komputerze z podłączonym drugim niezależnym USRP B200 włączany jest skrypt dla odbiornika.

2. QPSK Receiver

W tych dwóch miejscach kod wymaga ponownie zmiany na platformę B200.

Rys. 4 Fragment skryptu QPSK Receiver

	Obtain hardware info and verify hardware se	ettings.
23	hRadioInfo = info(hRadio)	
	Prepare QPSK Receiver	
	Create and configure the QPSK receiver Sys	stem object.
24	narams - usrnOPSKRyParams (B200) false)·
24	hBy = OPSKReceiver(/>
26	'ModulationOrder'	narams ModulationOrder
27	'SampleRate'.	params, Es
28	'DecimationEactor'.	params. Decimation
29	'EnameSize'	params FrameSize
30	'HeaderLength'	params.Headerlength
31	'NumberOfMessage'	params.NumberOfMessage
32	'PavloadLength'.	params.PavloadLength
33	'DesiredPower'.	params.DesiredPower
34	'AveragingLength',	params.AveragingLength,
35	'MaxPowerGain',	params.MaxPowerGain,
36	'RolloffFactor',	params.RolloffFactor,
37	'RaisedCosineFilterSpan',	params.RaisedCosineFilterSpan,
38	'InputSamplesPerSymbol',	params.Interpolation,
39	'MaximumFrequencyOffset',	params.MaximumFrequencyOffset,
40	'PostFilterOversampling',	params.Interpolation/params.Decimation,
41	'PhaseRecoveryLoopBandwidth',	params.PhaseRecoveryLoopBandwidth,
42	'PhaseRecoveryDampingFactor',	params.PhaseRecoveryDampingFactor,
43	'TimingRecoveryDampingFactor',	params.TimingRecoveryDampingFactor,
44	'TimingRecoveryLoopBandwidth',	params.TimingRecoveryLoopBandwidth,
45	'TimingErrorDetectorGain',	params.TimingErrorDetectorGain,
46	'PreambleDetectorThreshold',	params.PreambleDetectorThreshold,
47	'DescramblerBase',	params.ScramblerBase,
48	'DescramblerPolynomial',	params.ScramblerPolynomial,
49	'DescramblerInitialConditions',	params.ScramblerInitialConditions,
50	'BerMask',	params.BerMask,
51	'PrintOption',	true);

Rys. 5 Fragment skryptu QPSK Receiver cz. 2

Reszta kodu pozostaje bez zmian i po tych modyfikacjach jest gotowa do włączenia.

62

hTimePlot.YLimits = [0 1];

hSpectrum	<pre>= dsp.SpectrumAnalyzer;</pre>
hSpectrum.SampleRate	= hRadioInfo.BasebandSampleRate;
hSpectrum.SpectralAvera	= 10;
hSpectrum.FrequencyReso	onMethod = 'WindowLength';
hSpectrum.WindowLength	= 8192;
hSpectrum.Window	= 'Kaiser';
hSpectrum.SidelobeAtter	on = 160;
Construct time-domain plo	ect.

Rys. 6 Fragment skryptu QPSK Receiver cz. 3

Rys. 7 Fragment skryptu QPSK Receiver cz. 4

Po włączeniu skryptu TX na jednym urządzeniu i RX na drugim, sprawdzono działanie. Zdjęcie poniżej pokazuje włączone dwa radia oraz analizę widma, na którym widać zmiany po przybliżeniu jednego urządzenia do drugiego.

Rys. 8 Działanie QPSK

3. Testy LTE

Po weryfikacji działania radia wraz z Matlabem postanowiono przejść do systemu LTE i przetestowania testbedu w tej technologii. Aby rozpocząć pracę trzeba posiadać w tym przypadku Communications Toolbox Support Package for USRP Radio oraz LTE Toolbox. Tutaj Matlab również posiada dokumentację, która nie jest jednak ponownie zgodna z urządzeniem, co trzeba było zmienić.

LTE Transmitter

Dokumentacja pokazuje przykład wysyłania poprzez dwie anteny i nie przewiduje wybranego modelu, ponieważ USRP B200 posiada tylko jeden port TX i jeden RX, dlatego w kilku miejscach potrzebne są zmiany.

	LTE SIB1 Transmission over Two Antennas
	This example uses both channels of USRP® B210, X300 or X310 to transmit an LTE downlink signal that requires two antennas. The signal is generated by the LTE Toolbox [™] and random bits are inserted into the SIB1 field, the first of the System Information Blocks. The accompanying example sdruLTE2x2SIB1Rx.m receives this signal with two antennas, recovers the SIB1 data, and checks the CRC.
	This example uses the SDRu Transmitter System object™. The ChannelMapping property of the object is set to [1 2] to enable use of both channels. The step method takes a two-column matrix in which the first column is the signal for 'RF A' of the radio and the second column is the signal for 'RF B' of the radio.
	After starting this example, please run sdruLTE2x2SIB1Rx.m in a new MATLAB session. In Windows, if two B210 radios are used for these examples, each radio must be connected to a separate computer.
	Please refer to the Setup and Configuration section of Documentation for USRP® Radio for details on configuring your host computer to work with the SDRu Transmitter System object.
	Generate LTE Signal
1 2 3 4 5 6 7 8	<pre>% Check for presence of LTE Toolbox if isempty(ver('lte')) error(message('sdru:examples:NeedLST')); end % Generate LTE signal rmc = lteRMCDL('R.12'); % Base RMC configuration rmc.CellRefP = 2; % 2 transmit antennas per_PDECH Wayners = 2; % 2 transmit antennas</pre>
10	<pre>rmc.NUSUH.NLAYEYS = 2; % 2 layers rmc.NUSUH.NLAYEYS = 64; % Cell identity</pre>
11	rmc.NFrame = 100; % Initial frame number
12	<pre>rmc.TotSubframes = 8*10; % Generate 8 frames. 10 subframes per frame rmc.TotSubframes = 8*10; % Add exists to use allocated ODECU accounts allocated on the subframes of th</pre>
13	mmc.DCHAPUSCHEINDIE = 01 ; % Aud holse to unalidicated PDSCH Pesodrice elements
15	<pre>rmc.SIB.Enable = '0n';</pre>
16	<pre>rmc.SIB.DCIFormat = 'Format1A';</pre>
17	<pre>rmc.SIB.AllocationType = 0;</pre>
18	<pre>rmc.SIB.VRBStart = 0;</pre>
19	rmc.SIB.VRBLength = 6;
20	rmc.SIB.Gap = 0;
21	rmc.SIB.Data = randi([0 1],144,1); % Use random bits in SIB data field. This is not a valid SIB message
22	trData = [1;0;0;1];
23	<pre>[eNodeBOutput,txGrid,rmc] = IteRMCDLTool(rmc,trData);</pre>

Rys. 9 Fragment skryptu LTE Transmitter

Zmiana platformy na B200.

Connect to Radio

31	<pre>radioFound = false;</pre>
32	<pre>radiolist = findsdru;</pre>
33	<pre>for i = 1:length(radiolist)</pre>
34	<pre>if strcmp(radiolist(i).Status, 'Success')</pre>
35	if strcmp(radiolist(i).Platform, (B200')
36	radio = comm.SDRuTransmitter('Platform', 'B200')
37	'SerialNum', radiolist(i).SerialNum);
38	radio.MasterClockRate = 1.92e6 * 4; % Need to exceed 5 MHz minimum
39	radio.InterpolationFactor = 4; % Sampling rate is 1.92 MHz
40	radioFound = true;
41	break;
42	end
43	<pre>if (strcmp(radiolist(i).Platform, 'X300') </pre>
44	<pre>strcmp(radiolist(i).Platform, 'X310'))</pre>
45	<pre>radio = comm.SDRuTransmitter('Platform',radiolist(i).Platform,</pre>
46	'IPAddress', radiolist(i).IPAddress);
47	<pre>radio.MasterClockRate = 184.32e6;</pre>
48	radio.InterpolationFactor = 96; % Sampling rate is 1.92 MHz
49	radioFound = true;
50	end
51	<pre>if (strcmp(radiolist(i).Platform, 'N300') </pre>
52	<pre>strcmp(radiolist(i).Platform, 'N310'))</pre>
53	<pre>radio = comm.SDRuTransmitter('Platform',radiolist(i).Platform,</pre>
54	'IPAddress', radiolist(i).IPAddress);
55	<pre>radio.MasterClockRate = 122.88e6;</pre>
56	radio.InterpolationFactor = 64; % Sampling rate is 1.92e6
57	radioFound = true;
58	end
59	<pre>if (strcmp(radiolist(i).Platform, 'N320/N321'))</pre>
60	<pre>radio = comm.SDRuTransmitter('Platform',radiolist(i).Platform,</pre>
61	'IPAddress', radiolist(i).IPAddress);
62	radio.MasterClockRate = 245.76e6;
63	radio.InterpolationFactor = 128; % Sampling rate is 1.92e6
64	radioFound = true;
65	end
66	end
67	end

Rys. 10 Fragment skryptu LTE Transmitter cz. 2

Tutaj potrzeba zmienić ChannelMapping, który domyślnie ustawiony jest na dwa TX.

Rys. 11 Fragment skryptu LTE Transmitter cz. 3

W pętli również potrzeba zmienić wielkość macierzy, ponieważ oryginalnie jest większego rozmiaru, gdyż zakłada większą ilość portów.

	Send Signal over Two Antennas
79	% Scale signal to make maximum magnitude equal to 1
80 91	eNodeBoucput = eNodeBoucput/max(abs(eNodeBoucput(:)));
82	% Reshape signal as a 3D array to simplify the for loop below
83	% Each call to step method of the object will use a two-column matrix
84	samplesPerFrame = 10e-3*rmc.SamplingRate; % LTE frames are 10 ms long
85	<pre>numFrames = length(eNodeBOutput)/samplesPerFrame;</pre>
86	<pre>txFrame = permute(reshape(permute(eNodeBOutput,[1 3 2]),</pre>
87	<pre>samplesPerFrame,numFrames,rmc.CellRefP),[1 3 2]);</pre>
88	
89	<pre>disp('Starting transmission');</pre>
90	<pre>disp('Please run sdruLTE2x2SIB1Rx.m in a new MATLAB session');</pre>
91	
92	currentTime = 0;
93	while currentTime < 300 % Run for 5 minutes
94	for n = 1:numFrames
95	% Call step method to send a two-column matrix
96	% First column for IX channel 1. Second column for IX channel 2
97	if huffonUndonflow-0
90	wanning('sdnu;evamples:DronnedSamples' 'Dronned samples')
100	and
101	end
102	currentTime = currentTime+numFrames*10e-3; % One frame is 10 ms
103	end
104	release(radio);
105	<pre>disp('Transmission finished')</pre>

Rys. 12 Fragment skryptu LTE Transmitter cz. 4

Po takich zmianach można włączyć skrypt i przejść do skryptu odbiornika

LTE Receiver

Ponownie dokumentacja nie przewiduje wybranego modelu, więc w pokazanych miejscach trzeba zmodyfikować kod. Reszta skryptu pozostaje niezmieniona .

LTE Cell Search, MIB and SIB1 Recovery with Two Antennas
This example uses both channels of USRP® B210, X300 or X310 to receive an LTE downlink signal. The LTE Toolbox™ is used to synchronize, demodulate and decode the signal sent by the accompanying example sdruLTE2x2SIB1Tx.m. Since the transmitted signal uses a transmit diversity scheme, orthogonal space frequency block code (OSFBC) decoding is performed by the function IteTransmitDiversityDecode. In the end, the SIB1 field, the first of the System Information Blocks, is recovered and the CRC is checked.
This example uses the SDRu Receiver System object TM . The ChannelMapping property of the object is set to [1 2] to enable use of both channels. The step method outputs a two-column matrix in which the first column is the signal from 'RF A' of the radio and the second column is the signal from 'RF B' of the radio.
Before starting this example, please run sdruLTE2x2SIB1Tx.m in a separate MATLAB session. In Windows, if two B210 radios are used for these examples, each radio must be connected to a separate computer.
Please refer to the Setup and Configuration section of Documentation for USRP® Radio for details on configuring your host computer to work with the SDRu Receiver System object.
Connect to Radio
<pre>radioFound = false; radiolist = findsdru; for i = 1:length(radiolist) if stremp(radiolist(1).Platform [8200] radio = comm.SDRUReceiver('Platform [8200] 'SerialNum', radiolist(1).SerialNum); radio.MasterClockRate = 1.92e6 * 4; % Need to exceed 5 MHz minimum radio.DecimationFactor = 4; % Sampling rate is 1.92e6 radioFound = true; break; end if (stremp(radiolist(1).Platform, 'X300') </pre>
<pre>strcmp(radiolist(i).Platform, 'X310')) radio = comm.SDRuReceiver('Platform',radiolist(i).Platform, 'IPAddress', radiolist(i).IPAddress);</pre>
radio.MasterClockRate = 184.32e6; radio.DecimationFactor = 96; % Sampling rate is 1.92e6 radioFound = true;

Rys. 14 Fragment skryptu LTE Receiver cz. 2

Aby można było przetestować działanie najlepiej posiadać dwa komputery, jednak pojawia się tutaj problem z licencją Matlaba. Rozwiązanie znalezione na forach mówi o tym, żeby włączyć Matlaba w dwóch osobnych instancjach i USRP podłączyć do dwóch różnych od siebie portów, np. jeden na USB 2.0, drugi na USB 3.0. Taki krok poczyniono. Po włączeniu najpierw transmisji, a później odbioru, zaprezentowano poniżej wyniki.

Checking radio connections... Win32; Microsoft Visual C++ version 14.2; Boost_107200; UHD_3 ----- see libuhd version information above this line --radio = comm.SDRuTransmitter with properties: Platform: 'B200' SerialNum: '3215B7C' ChannelMapping: 1 CenterFrequency: 900000000 LocalOscillatorOffset: 0 Gain: 25 PPSSource: 'Internal' ClockSource: 'Internal' MasterClockRate: 7680000 InterpolationFactor: 4 TransportDataType: 'int16' EnableBurstMode: false Starting transmission Please run sdruLTE2x2SIB1Rx.m in a new MATLAB session

Najpierw wykryto transmiter i pokazano, żeby włączyć osobny skrypt odbiornika.

Rys. 15 Informacja o urządzeniu

Z racji tego, że skrypt włączono chwilę później, zaczęła wypisywać się krótko informacja o utracie pakietów, ale finalnie transmisja zakończyła się pomyślnie.

```
Starting transmission
Please run sdruLTE2x2SIB1Rx.m in a new MATLAB session
Warning: Dropped samples
Transmission finished
```

Rys. 16 Informacja o transmisji

Równolegle po włączeniu odbiornika, został on zidentyfikowany poprawnie jako osobne drugie urządzenie, mimo podłączenia do tego samego komputera, co widać na przykład po innym numerze seryjnym.

```
Checking radio connections...
Win32; Microsoft Visual C++ version 14.2; Boost_107200; UHD_3
----- see libuhd version information above this line ----
radio =
 comm.SDRuReceiver with properties:
                Platform: 'B200'
               SerialNum: '3215B92'
          ChannelMapping: 1
         CenterFrequency: 900000000
    LocalOscillatorOffset: 0
                    Gain: 30
                PPSSource: 'Internal'
             ClockSource: 'Internal'
         MasterClockRate: 7680000
        DecimationFactor: 4
        TransportDataType: 'int16'
          OutputDataType: 'double'
         SamplesPerFrame: 19200
         EnableBurstMode: true
        NumFramesInBurst: 4
```


Następnie utworzył się wykres spektrum sygnału generujący się na żywo.

Plotting received signal spectrum...

Rys. 18 Spektrum sygnału LTE

Na końcu wygenerował się wykres korelacji. Jest on poprawnie pokazany w tym przypadku tylko dla jednego kanału, ponieważ urządzenie drugiego nie posiada.

Oraz wygenerował się również wykres ostateczny wykres z analizatora widma na odbiorniku. Na środku widać duży wzrost w momencie przechwycenia pakietu.

Rys. 20 Wykres z analizatora widma na odbiorniku.

4. Testy Wi-Fi

Finalnym etapem pracy było przetestowanie testbedu na łączności Wi-Fi. Początkowe etapy nie przebiegały pomyślnie ze względu na niezgodne częstotliwości. Po weryfikacji udało się jednak to skorygować.

Matlab w swojej dokumentacji udostępnia kod, który postanowiono zaimplementować. W tym przypadku nie trzeba było nic zmieniać, ponieważ urządzenie jest w skrypcie wykrywane, a nie zdefiniowane na początku.

Najpierw skrypt sprawdza czy jest zainstalowany WLAN Toolbox. Następnie sprawdzane są parametry radia.

Rys. 21 Fragment kodu skryptu WLAN

Po włączeniu radio zostało poprawnie wykryte.

```
Checking radio connections...

Platform: 'B200'

Address: '3215B92'

MasterClockRate: 20000000

USRPDecimationFactor: 1

USRPGain: 50
```

Rys. 22 Informacja o wykryciu urządzenia

Użytkownik ma do wyboru dwa pasma:

- 5 GHz domyślne,
- 2.4 GHz.

Po zatwierdzeniu którejś z opcji, wybiera się kanały z danym pasmem. Domyślnie jest to 153 i 157 dla 5 GHz lub 1 i 6 dla 2.4GHz.

Rys. 23 Fragment skryptu WLAN cz. 2

Przeprowadzono dwa testy dla osobnych pasm.

4. Test 2.4 GHz

Pierwszy test był na paśmie 2.4 GHz. Tester pytany jest o kilka opcji. Na początku wybrano czas wychwytywania danych. Później skorzystano z opcji generowania wykresów. Następnie wybrano opcję pokazywania wszystkich pakietów oraz odrzucono wyświetlanie dostawcy przy adresach MAC. Kolejno ustawiono pasmo na 2.4 GHz i wybrano domyślne kanały [1 6]. Ostatecznie odrzucono również opcję generowania pliku MEX, ponieważ przy wcześniejszych próbach generował się zbyt długo.

```
Seconds of data to capture? [0.2]: 0.1
Do you want to enable scopes? Y/N [N]: y
Do you want to display packet info?
1 == SSID only (default)
2 == Additional beacon packet info
3 == Show all packets (includes non-beacons)
[1]: 3
Do you want display vendors for MAC addresses?
(Vendor list must be downloaded once, this may take a minute or two) Y/N [N]: n
What is the band you want to scan?
1 == 5 GHz band (default)
2 == 2.4 GHz band
[1]: 2
Valid channel numbers are:
  1-13 (2.412-2.472 GHz)
  14
        (2.484 GHz)
Which channels do you want to scan? [1 6]:
Do you want to generate MEX file for receiver? Y/N [N]: n
```

Rys. 24 Informacje do wyboru w skrypcie

Po włączeniu, pokazuje się analizator widma, który na bieżąco sprawdza pasmo.

Rys. 25 Włączony skrypt wraz z analizatorem widma

Następnie podłączono się komputerem do routera i włączono pingowanie adresu ip oraz pobieranie kilku dużych plików.

Rys. 26 Włączony skrypt wraz z analizatorem widma cz. 2

Po przybliżeniu komputera do radia, wykres na analizatorze się zmienił.

		1 🚾 📊 🖉 🕕 📖 📉 😒	
		Input PSD	
		nya orang sa kanan ana ana ana ana ana ana ana ana	der eine seine
	In-phase Amplitude pon, in	Frequency (MHz)	* 0 0 10
Accessing Actains-C, 12.68 Actains-C, 12.68 Actains-C, 12.68 Accessing Microsomen0.88 M	Fram-7 Processing Fram-7 Proce	Running rescier at channel 1 (2.412 Ott) III Processes Um Alliaceands of rescieve data Running review at channel 6 (2.432 Ott) Polations (2.504 (2.50	1999-1933 1995 (Sales and 20 Mar, 17-6 14688 4994) Vi 4994 Vi 4
	21 24 27 27 50 33 34 59 42 46 46 51	Prove sing dom_philicrometry.philicrometry.philicrometry. net silose distort first children the <u>philose</u> 1 is a first in <u>anothermiticational (line 100</u> first in <u>anothermiticational (line 100</u> for in <u>children (line 100</u> (uili, rightoff, roborflats, chafts, mileter) = 0.009	

Rys. 27 Włączony skrypt wraz z analizatorem widma po przechwyceniu pakietu

Ostatecznie pakiet został przechwycony i zdekodowany, co widać w informacji oraz wykresach, a analizator widma znacznie się zmienił, co kończy test na tym paśmie.

Checking radio connections
Platform: 'B200'
Address: 5215892 MasterClockPate: 2000000
USRPDecimationFactor: 1
USRPGain: 50
Running receiver at channel 1 (2.412 GHz)
Processed 100 milliseconds of received data
Running receiver at channel 6 (2.437 GHz)
Packet Info
Payload Size: 32 (Bytes)
Modulation: 16QAM Code Rate: 1/2
Type: Control Subtype: Block Ack
MACAddress1: 34:20:04:04:91:87
MACAddress2: 74:87:30:80:48:00
Packets Decoded: 1
Processed 100 milliseconds of received data
ROT WASHINGTS
-Oreal(Channel I) - Oimag(Channel I)
Slapped

Desired channel(s) scanned

Rys. 28 Informacja o przechwyceniu pakietu

5. Test 5 Ghz

Drugim testem było sprawdzenie tego samego skryptu na paśmie 5 GHz. Wprowadzone parametry prezentują się następująco:

```
Seconds of data to capture? [0.2]: 0.1
Do you want to enable scopes? Y/N [N]: y
Do you want to display packet info?
1 == SSID only (default)
2 == Additional beacon packet info
3 == Show all packets (includes non-beacons)
[1]: 3
Do you want display vendors for MAC addresses?
(Vendor list must be downloaded once, this may take a minute or two) Y/N [N]: n
What is the band you want to scan?
1 == 5 GHz band (default)
2 == 2.4 GHz band
[1]: 1
Valid channel numbers are:
  7-16 (5.035-5.080 GHz)
  34-64 (5.170-5.320 GHz)
 100-144 (5.550-5.720 GHz)
  149-165 (5.745-5.825 GHz)
Which channels do you want to scan? [153 157]:44
Do you want to generate MEX file for receiver? Y/N [N]: n
```


Tutaj zmianami są tylko: pasmo 5 GHz oraz kanał 44, który sprawdzono na komputerze.

Adres IP: 192.168.0.199
Router: 192.168.0.1
Zabezpieczenia: WPA/WPA2 Personal
BSSID: 34:2c:c4:c4:91:ae
Kanał: 44 (5 GHz, 80 MHz)
Kod kraju: DE
RSSI: -27 dBm
Szum: -88 dBm
Szybkość transmisji: 866 Mb/s
Tryb PHY: 802.11ac
Indeks MCS: 9
NSS: 2

Rys. 30 Parametry access pointa sprawdzone na komputerze

Wyniki prezentują się znacznie lepiej. Analizator widma zmienił swoją wartość na około -90 dB, co zgadza się z danymi z komputera.

Rys. 31 Włączony skrypt 5 GHz po przechwyceniu pakietu

Po rozpoczęciu pingowania, pakiety zostały przechwycone. Ich typ nie jest poprawnie wyłapywany przez skrypt, aczkolwiek testy przeszły i zakończyły się pomyślnie.

Desired channel(s) scanned

Rys. 32 Przechwycone pakiety